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Abstract- Buffered crossbar switches have received great
attention recently because they have become technologically
feasible, have simpler scheduling algorithms, and achieve better
performance than a bufferless crossbar switch. Buffered crossbar
switches have a buffer placed at each crosspoint. A cell is first
delivered to a crosspoint buffer and then transferred to the output
port. With a speedup of two, a buffered crossbar switch has
previously been proved to provide 100% throughput. We propose
what we believe is the first feasible scheduling scheme that can
achieve 100% throughput without speedup and a finite crosspoint
buffer. The proposed scheme is called SQUISH: a Stable Queue
Input-output Scheduler with Hamiltonian walk. With SQUISH,
each input/output first makes decisions based on the information
from the virtual output queues and crosspoint buffers. Then it
is compared with a Hamiltonian walk schedule to avoid possible
"bad" states. We then prove that SQUISH can achieve 100%
throughput with a speedup of one. Our simulation results also
show good delay performance for SQUISH.

I. INTRODUCTION

With the growing demand of Internet traffic, there is
an increasing interest in designing high performance packet
switches. Due to the memory speed constraint, input queueing
or combined input and output queueing (CIOQ) is used, with
bufferless crossbar switching fabrics. With input-queueing, at
each input port, there is a separate queue corresponding to each
output, known as virtual output queues (VOQs), to avoid head-
of-line (HOL) blocking [1]. A bufferless crossbar switching
fabric is used to transfer cells from inputs to outputs. However,
such switches usually require complex scheduling algorithms
to achieve good performance; these include maximum weight
matching [2], [3], maximal [4] and maximum size matching
[5], or iterative schedulers [6], [7]. While some schedulers
have lower complexity (O(log N)), where N is the number
of ports in the switch, they still suffer from delays that grow
with N [8]-[10].

To provide good performance, while addressing the com-
plexity issue of scheduling algorithms, one approach is to add
limited buffers at each crosspoint inside the crossbar. With
today's ASIC technology, this can be implemented in a single
chip. This makes buffered crossbar switches an attractive solu-
tion compared to the traditional input-queued switch because
the crosspoint buffers allow for simpler scheduling algorithms
and better delay performance.

This work is supported in part by the National Science Foundation under
Grant CNS-0435303, and also in part by the New York State Center for
Advanced Technology in Telecommunications (CATT).

With a speedup of 2, the authors in [11] showed that a
buffered crossbar can provide 100% throughput. In [12], the
results were extended to variable size packets. The author
in [13] proved that the speedup requirement can be reduced
to 2 -1/N. However, without speedup, previous throughput
results are only limited to uniform traffic loads. Under uniform
traffic, it has been shown that longest-queue-first at the input
port and round-robin at the output port (LQF-RR) guaranteed
100% throughput [14]. In [15], the authors proved that a
simple round-robin scheduler at both input and output ports
can provide 100% throughput under uniform traffic

It is of general interest to know the maximum throughput
that a buffered crossbar switch, without speedup, can achieve
under admissible traffic. In [16], the authors proposed a
distributed scheduling algorithm and derived a relationship be-
tween throughput and the size of crosspoint buffers. However,
to achieve 100% throughput, it needed an infinite buffer. To our
knowledge, there is no scheme that can achieve 100% through-
put for a finite crosspoint buffer without speedup. In this
paper, we propose a Stable QUeue Input-output Scheduler with
Hamiltonian walk (SQUISH) for buffered crossbar switches.
We assume a buffered crossbar switch with finite crosspoint
buffers and no speedup. With SQUISH, each input first makes
decisions on which crosspoint to send a cell based on the
buffer occupancy information. Each output simply chooses
the longest available queue for service. Then a Hamiltonian
walk is applied to escape from potentially bad states. The
SQUISH algorithm, which has a complexity of O(log N),
can be shown to achieve 100% throughput for any admissible
traffic satisfying the strong law of large numbers (SLLN). We
also include an alternative proof using the Lyapunov function
technique; this is however a weaker result since it holds only
for Bernoulli arrivals.

The rest of the paper is organized as follows. In section II,
we briefly describe the buffered crossbar switch architecture.
In section III, we introduce the fluid model of a buffered
crossbar and prove that an approximate maximum weight
scheduler is rate stable. In section IV, we propose the SQUISH
scheduling algorithm and prove its stability. In Section V, we
present simulation results. Finally, section VI concludes the
paper.

II. BUFFERED CROSSBAR SWITCH MODEL

Figure 1 shows an N xN buffered crossbar switch. We shall
assume fixed size packet (cell) switching. Variable size packet
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Fig. 1: Buffered crossbar switch.
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Fig. 2: The scheduling phases for buffered crossbar switch.

switching can be implemented by introducing packet segmen-
tation and reassembly. To prevent head-of-line blocking, the
inputs use virtual output queues as well. Each input maintains
N VOQs, one for each output. Let Qij(n) denote the queue
length of VOQij at time n, n = 0,1, 2,.... Each crosspoint
contains a finite buffer of size B. The buffer between input
i and output j is denoted as CBij; Bij (n) is the buffer
occupancy of CBij at time n, Bij (n) < B.

The key role of crosspoint buffers is to separate the input
contention from the output contention. This results in a two-
stage scheduling scheme. As shown in Figure 2, in the
input scheduling phase, each input determines which cell is
transferred from a VOQ to the corresponding crosspoint buffer
with available space. In the output scheduling phase, each
output determines from which non-empty crosspoint buffer
to serve a cell. When a crosspoint buffer is full, no more
cells can be transferred to it. Note that if the crosspoint
buffer size is unlimited, the buffered crossbar is equivalent
to output queuing and input schedulers are not necessary,
because packets can directly go to crosspoint buffers without
buffering at inputs. For a practical single-chip implementation
using current technology, however, the crosspoint buffers are
constrained to a small number.

Let Aij(n) be the number of packets that have arrived at
input i destined for output j up to time slot n. Assume the
arrival process {Aij(n),i,j 1,.,N} satisfies the strong
law of large numbers (SLLN), i.e., with probability one,

lim = AijA i,j = 1,... ,N. (1)
n--oo n

Definition 1: An arrival process is said to be admissible if

5 ij <1, Aij <1. (2)
i J

Let Dij (n) be the number of departures from crosspoint buffer
CBij up to time slot n.

Definition 2: A switch operating under a matching algorithm
is rate stable if, with probability one,

Ajj 1...,(N

for any arrival process satisfying condition (1).
Let Xij(n) be the total number of cells in VOQij and

CBij at time n, i.e., Xij(n) = Qij(n) + Bij(n), X(n) =

[Xij(n)]. Let S(n) = [SI(n); S°(n)] be the schedule at time
n. SI (n) = [Stij (n)] is the input schedule and is subject to the
following constraints:

S S, (n) < 1, S,j(n) = 0 if Bij(n) = B; (4)

SO (n) [Sp (n)] is the output schedule and is subject to the
following constraints:

S Si°(n) < I,Si°(n) = 0 if Bij(n) = 0. (5)

The set of all possible schedules is denoted by II. For each
schedule S C H, define the weight Ws (n) of a schedule as

Ws(n) = (S° (n), X(n)) ,

where for two matrices A and B of the same size, (A, B)
Eij AijBij.
Note that although the weight is calculated with the output

schedule only, in fact, the input schedule comes into the weight
calculation implicitly. Indeed, from Figure 2, we can see that
the output schedule is performed after the input schedule. A
valid output schedule is determined by the state of crosspoint
buffers. This takes place after the input scheduling phase, when
the state of crosspoint buffers is updated.

III. FLUID MODEL RESULTS

Next, by using the fluid model introduced in [4], we describe
a corresponding fluid model for a buffered crossbar switch. At
each time slot, the switch employs a schedule S. For a S C II,
let Ts (n) be the cumulative amount of time that schedule S
has been used by time slot n. Then we have the following
equations governing the switch:

Xii(n) = Xij(0) + Aij(n) - Dij(n),
n

Dij(n) = E E Sp.(Ts(k)
SEEr k=l

E Ts(n) = n.
SC.I

Ts(k -1)),

The first equation states that the number of cells in Xij
backlogged in the switch equals the total number of arrivals
minus departures. The second equation expresses the number
of departures from CBij in terms of the schedule that serves
the buffer CBij. The third equation simply states that at each
time slot, exactly one of the possible schedules is used.

In a manner similar to [4], the fluid model of a switch is
governed by the following set of equations:

Xij (t) = Xij (0) + Aijt -Dij (t),
Dij(t) = 5 S°jTs(t),

SC.I

E Ts (t) = t.
SEr

(6)lim Dij (n)
n--.oc n

(3)



where each solution (D, T, X) is called the fluid limit. The
fluid limit can be obtained through a limiting procedure
described next. First, extend the definition of Xij(t) for any
t e (n,n +1),

Xij (t) = Xij (n) + (t -n) (Xij (n + 1) -Xij (n)).
Define

Let (D, T, X) be a fluid model solution with X(O) = 0.

KX(t), D(t)) S (t) tES: Ts (t))

E (X(t), S°TS (t)

5 Ws(t)Ts (t),
ScIH'

Then, for each sequence {r,}, there exists a subsequence
{rnk} and a continuous function Xij (t) such that, for any

t > 0,

lim sup X2k (t')
k o O<t'<t

where Ws(t) = KX(t), SO). From the fluid limit procedure,

(X(t), S,)

Xij(t') = 0.

That is,

Xij (t) = lim Xi(t
r-oo r

Any function X(t) obtained through the limiting procedure
is said to be a fluid limit of the switch, and each fluid limit
(D, T, X) satisfies the fluid model equation (6).

For a buffered crossbar switch, we define the Input-Queued
Switch Maximum-weight-matching Emulation (IQSME)
schedule S* as the solution of the following optimization
problem:

maxs (S(n), X(n))
N N

s.t.SsiJ < I,ESsi <1.
i=l j=l

Si*j = 1 means (i) if Bij < B, then input i transfer a cell
to crosspoint buffer CBij and output j serves a cell from
crosspoint buffer CBij; (ii) if Bij = B, then input i stays
idle and output j serves a cell from crosspoint buffer CBij. S*
is essentially an emulation of the maximum weight matching
schedule in an input-queued switch with no crosspoint buffers.
Define the weight W* of S* as

W* = (S*(n),X(n))

We will now introduce the following lemma, which is a

fluid model equivalent of Lemma 1 in [9]:
Lemma 1: For any admissible traffic satisfying (1), if the

weight of a scheduling algorithm at each time slot is within a

bounded constant value C from the maximum weight, i.e.,

Ws (n) > W* (n) -C, (7)

then this algorithm is rate stable.
Proof: Let II' be the set of schedules such that Ws (n) >

W* (n) -C, S C H'. Let A be the N x N matrix with entries
Aij. Then, in addition to (6), we have another fluid equation

lim X(rt) So
r--Oo r

> lim -((X(rt), S*) -
r-oX Sr

X(t),SS*)

-C)

(10)

Therefore, following [4], in the fluid limit scale, we have

Ws (t) = W* (t).

Equation (9) becomes

KX(t), D(t)) W* (t)Ts(t)

W (t) Ts (t)

W*(t).

Thus,

KX(t), X(t))

(1 1)
where A = [Aij] is a doubly stochastic matrix. From the
Birkhoff-von Neumann theorem, A can be written as a con-

vex combination of permutation matrices Sk, i.e., for k =

1,2,...,K, Tk > 0 and kl=Y 1,

K

A = EakSk.
k=1

Thus, we have
K

E5Yk KX(t), Sk)
k=l

Since W* (t) = max KX(t),S (t) ),

K

W* (t) -> E: -k (X(t), Sk ) -

k=l

Therefore,

(X(t), X(t))= (X(t), 1A) - W-*(t) < 0.

E Ts(t) =t.

Seri

(8) From Lemma 1 in [4], the fluid model is weakly stable and
according to Theorem 3 in [4] the switch is rate stable.

(9)I
X,r (t) = Xij (rt), r > 0.ij r

I

.X(t).A)- X(t).D(t)

.X(t) . A) W-* (t) .

K

.X(t).A)= X(t).E-.kSk
k=l



IV. THE STABLE QUEUE INPUT-OUTPUT SCHEDULER
WITH HAMILTONIAN WALK

In this section, we present the Stable QUeue Input-output
Scheduler with Hamiltonian walk (SQUISH). By using the
Lemma proved in the previous section, we prove that SQUISH
can achieve 100% throughput.

Like we did for IQSME, we define the Input-Queued Switch
Hamiltonian Walk Matching Emulation (IQSHWME) schedule
H = [Hij] for buffered crossbar switches as an emulation
of the matching generated by a Hamiltonian walk for input-
queued switches [9]. For an input-queued switch, there are
N! distinct matchings. A Hamiltonian walk H(n) visits each
of the N! distinct matchings exactly once during times n =

1,2, ..., N!. For n > N!, H(n) = H(n mod N!). A
Hamiltonian walk can be generated with a simple algorithm
with a time complexity of 0(1) [17]. The weight WH of H
is defined as

WH = (H,X).

Next, we define the SQUISH algorithm for a buffered crossbar
switch with a crosspoint buffer size of B, for any B > 0.
At time n+1, a new possible schedule M(n+1 ) = [Mh (n+

1), MP (n + 1)] is generated as follows:
Input schedule: For each input i, if Sj (n) = 1, Bij (n+1) = 0
and Qij (n + 1) > 0, then M'j(n + 1) = 1. Otherwise, among
the VOQs with non-full crosspoint buffers, pick the longest
VOQ for service.
Output schedule: At each time slot, each output j serves the
non-empty crosspoint buffer corresponding to the largest Xij.
This determines MPj(n + 1).
Then the schedule S(n + 1) used by SQUISH at time n + 1
is:

S(n + 1) = arg maxse{M(l+±l),H(n+l)}Ws(n + 1). (12)

We will use an example to illustrate SQUISH operation.
Consider a 3 x 3 buffered crossbar switch with a crosspoint
buffer size of 4. At time slot n+1, assume the states of VOQs
and crosspoint buffers are

3 5 4 0 0 4
4 2 4 and 1 3 4
3 5 4 2 0 3

respectively. We also assume that the input schedule SI(n)
used at time slot n is

0 0
0 0 11.
0 1 0

Then according to SQUISH, MI (n + 1) and MO (n + 1) are

[

1 0 0 O 0 1
1 0 0 and I 1 01,
0 1 0 O[u OJ

respectively. The weight of M(n + 1) is 4(VOQ21) +
1(CB21) +2(VOQ22) +3(CB22) +4(VOQ13) +4(CB13) =

No cell transferred
Bi j(n+1) = B= .(n +1) = 0

M(n+1) Input Scheduling Output Scheduling

Cell transferred
Bi (n + 1) = 0 Bi ,(n+1) = 1

Input Scheduling Output Scheduling

Fig. 3: Cross-point buffer CBil,j state under schedules M(n+
1) and S(n) in time slot n + 1.

18. Assume the Hamiltonian walk H(n + 1) is

I 0 0
O O 1.
0 1 0

Then the weight of Hamiltonian walk is 3(VOQ11) +
5(V0Q32) + 4(V0Q23) + 4(CB23) = 16. Since WM(n+1) >

WH(n+l), M(n + 1) is used as the schedule at time n + 1.
Theorem 1: The SQUISH scheduling algorithm is rate stable

if the input traffic is admissible and satisfies (1).
First, we define how a schedule S (n -p) (used at time slot

(n -p), p > 0) is applied at time n. Note that the schedule
at (n -p) may not be a feasible schedule for time n, i.e., if
the crosspoint buffer is full, then the input cannot send a cell
to it, or if a crosspoint buffer is empty and the output cannot
serve it. Therefore, we set Sf; (n -p) to be 0 if the crosspoint
buffer CBij is full. Similarly, SP (n -p) is set to be 0 if
the crosspoint buffer CBij is empty. We denote the schedule
S(n - p) after this transformation as S(n - p). Then we can
define the weight of schedule S(n -p) at time n as

WS(n-P) (n) = (S° (n -p), X ).

With the above definition, we prove the following Lemma:
Lemma 2: Let S(n) and S(n + 1) be the schedules used

at time n and n + 1 respectively, then WS(n+l)(n + 1) >
WS(n) (n + 1).

This Lemma means that at time slot n + 1, the schedule
generated by SQUISH at time slot n + 1 has a larger weight
than the schedule used in the previous time slot n.

Proof: We prove this by contradiction. Assume

WS (n+ 1) (n + 1) < Ws (n) (n + 1).
Then from the definition of the SQUISH algorithm,

WM(n+l)(n + 1) < WS(n)(n + 1),

where WM(n +1) (n+1)=X=l,=lM ( l (n+1)
and Ws(n) (n + 1) = N=1 EN1S (n)Xij(n + 1).

This is only possible when there exists at least one output
j' under schedule S(n), such that output j' serves crosspoint
buffer CBijl,, while with schedule M(n + 1) output j' serves
a different crosspoint buffer CBi2j, (i1 7 i2), and

Xij,/(n + 1) > Xi2j/(n + 1).



Since with M(n+ 1), output j' will serve the non-empty cross-
point buffer corresponding to the largest Xij,, i = 1, 2,.. ., N,
it means that with M(n + 1), at the output scheduling phase,
Bi,jl(n + 1) = 0 (as shown in Fig. 3). This implies that at
the beginning of time slot n + 1, Bijl, (n + 1) = 0 and with
M(n + 1), input i1 does not send a cell to CBily, that is
M,, j/(n + 1) = 0 (Fig. 3).
Note that at the beginning of time slot n + 1, both S (n) and

M(n + 1) have the same VOQs and crosspoint buffers states.
Therefore, with S(n), at the beginning of time slot n + 1,
Bijl, (n+l ) = 0. However, with S(n), at the output scheduling
phase, crosspoint buffer CBijl, is served. This is only possible
if with S(n), at the input scheduling phase, input i1 sends a
cell to CBijl,, that is Sf1j(n) = 1 and Qi,jl(n + 1) > 0.

Therefore, with schedule M(n + 1), at the input scheduling
phase, Bijl (n + 1) =0, S j/(n) 1 and Qijli(n + 1) > 0.
According to the definition of M(n + 1), this implies that
M/ j/ (n + 1) = l and we have a contradiction. Therefore, we
conclude that

WS (n+ 1) (n + 1) > Ws (n) (n + 1).

Now, we are ready to prove Theorem 1.
Proof: From Lemma 1, to prove that the algorithm is

rate stable, it suffices to show that

Ws (n) > W* (n) -C,

where C is a bounded constant. Since there is at most one
arrival or departure from each Xij in each time slot, we obtain
that for any schedule P

Wp(n) > Wp(n + k) -kN. (13)
Consider any given time T, let S* denote the IQSME at time
T. By the property of Hamiltonian walk, there exists a n' C
[T -N!, T], such that the IQSHWME at n' is the IQSME at
T, i.e., H(n') = S*. Thus we have

WS(n/)(n/) >_ WH(n/)(n/)
= Ws* (n')
> Ws* (T) -(T -r')N, (14)

where the first inequality is from the definition of the SQUISH
algorithm, and the last inequality is from (13).

Again, from Lemma 2 and (13),

WS(T)(T) > WS(T-1)(T) > WS(T-1)(T -1)- N.
Using this repeatedly, we obtain

WS(T) (T) > Ws(n') (n/) -(T -n')N. (15)
Combining (14) and (15), we have

WS (T) (T) > Ws *(T)-l 2(Ti-n)N
Since T- n' < N!, this implies

WS(T) (T) > Ws (T) -2NN!,

and it is true for any T. From Lemma 1, the SQUISH
algorithm is therefore rate stable. U

In SQUISH, a centralized scheduler is needed to compute
the weights of the schedules generated by M(n) and the
Hamiltonian walk, respectively. Therefore, the lengths of up
to two queues per port need to be sent to the scheduler. The
scheduler will add up the queue lengths for each schedule, with
time complexity 0 (logN). The scheduler then compares the
two weights and selects the schedule with larger weight. The
time complexity of generating the next vertex in a Hamiltonian
walk is 0(1), and the time complexity to find the longest
queue is 0 (logN). Therefore, the complexity of SQUISH is
O (log N).
SQUISH can be implemented in a pipelined manner to

reduce the complexity and/or address the issue of latency
between the line cards and scheduler. With a pipeline depth
p, at time slot n, the queue length information is sent to
the scheduler. After p time slots, a new schedule is obtained
and used at time n + p. We can prove that the pipelined
SQUISH algorithm can also achieve 100% throughput using
an approach similar to the proof of Theorem 1. The proof is
not included here for the sake of brevity. Finally, we include
in the Appendix an alternative proof for the case of Bernoulli
arrivals using the Lyapunov technique.

V. PERFORMANCE STUDIES

In this section, we study the delay performance of the
SQUISH scheduling algorithm via simulations. The traffic
patterns studied in this section are uniform and non-uniform
traffic with Bernoulli and bursty arrivals. For bursty traffic, all
the cells in the same burst go to the same destination. The burst
lengths are chosen independently from the following truncated
Pareto distribution:

P(A burst has a length 1) 1= ,.. , 10000,

where a is the Pareto parameter and c is the normalization
constant; we vary a to get different average burst lengths. In
our simulations, all inputs are equally loaded on a normalized
scale p C (0,1), and we measure the fixed length packet (cell)
delay.

A. Uniform Bernoulli and bursty traffic
For uniform traffic, the destination of a new cell (burst) is

uniformly distributed among all the output ports, i.e., Aij =

p/N. Figure 4 shows the delay performance under uniform
Bernoulli and bursty traffic with different Pareto parameters.
When a = 1.9, the average burst length is about 9. When
a = 1.7, the average burst length is about 24. We can see
that SQUISH has delay performance very close to an output-
queued switch. Indeed, even a simple round-robin scheduler
has a delay performance close to an output queued switch
[18]. However, if the traffic is nonuniform, the round-robin
scheduler fails to achieve 100% throughput. We therefore
study the delay performance of SQUISH under nonuniform
traffic next.
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Fig. 4: Average delay under uniform Bernoulli and bursty
traffic, N = 32, crosspoint buffer size B = 1.
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Fig. 6: Average delay under lin-diagonal traffic, N 32, B
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Fig. 5: Average delay under log-diagonal traffic, N
B = 1.

B. Nonuniform traffic

We use the following traffic patterns to test the performance
of SQUISH.

. Log-diagonal [19]: arrival rates at the same input differ
exponentially, i.e., Aj(±+j) 2Ai(i+j+l), where 0 <j <
N -2.

. Lin-diagonal [19]: arrival rates at the same input differ
linearly, i.e., Aj(+j)- Ai(i+j+,) = 2p/N(N + 1), where
0 < j< N -2.

. Hot-spot [18]: For any input port, Aii = wp, Aij = (1
w)p/(N -1), for t j. By changing the factor w, we

can get different nonuniform traffic patterns.

Figures 5 and 6 shows the delay performance for log-
diagonal and lin-diagonal traffic. We can see that the average

delay performance for all traffic patterns is close to an output-
queued switch.

Figure 7 shows the delay performance for Bernoulli traffic
with w = 0.25, 0.5 and 0.75. For the hot-spot bursty traffic,
a = 1.9 and w = 0.5. We can see that for different w,

the average delays are always close to that of an output-
queued switch. Note that under hotspot traffic, the round-robin
scheduler has a throughput around 85% [18] and the SBF-LBF
[20] has a throughput around 87%.

Load

Fig. 7: Average delay under hotspot traffic with different
32, values of w, N = 32, B = 1.

C. Switch size effect

Generally, for input-queued switches, the average delay
increases linearly with the switch size. For output-queued
switches, the delay is independent of the switch size. In this
simulation, we test the delay performance with different switch
sizes. Figure 8 shows the average delay with different switch
sizes. For a given switch size, we simulated uniform Bernoulli,
nonuniform Bernoulli (w = 0.5) and uniform bursty traffic
(a = 1.9). We can see that for Bernoulli traffic, the average
delays are almost the same for different switch sizes. For
bursty traffic, the average delay does not increase with the
switch size.

D. Buffer size effect

Note that when the crosspoint buffer size is infinite, a
buffered crossbar switch would become equivalent to an
output-queued switch. Therefore, if we increase the crosspoint
buffer size, the average delay will decrease, and eventually
converge to the average delay of an output-queued switch.
In our previous simulations, we can see with a crosspoint
buffer size of one, the average delay is already very close to
an output-queued switch. Therefore, increasing the crosspoint
buffer size will only lead to a marginal delay improvement.
Next, we report the simulation results for a very skewed
loading-diagonal traffic. With diagonal traffic, Aii = p72,
Aij = p72, for j (i + 1) mod N. Under diagonal traffic,
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Fig. 8: Average delay with different switch sizes under uniform
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Fig. 9: Average delay under diagonal
crosspoint buffer sizes, N = 32.

traffic with different

for output j, only crosspoint buffer CBjj and CB(j l)j
will receive packets, the remaining crosspoint buffers are not
utilized.

Figure 9 shows the average delay under diagonal traffic with
different crosspoint buffer sizes. We can see under diagonal
traffic, when the loading is 0.99, and with a crosspoint buffer
size of 1, the average delay is high as compared to the output-
queued switch. However, if we increase the crosspoint buffer
size, i.e., when B = 16, the delay drops to a number very close
to that of an output-queued switch. For switch size N = 64,
the delays are almost the same as for N = 32 and we get
similar results.

VI. CONCLUSION

In this paper, we have proposed a Stable Queue Input-output
Scheduler with Hamiltonian walk (SQUISH) for buffered
crossbar switches with a crosspoint buffer size as small as

one and no speedup. The complexity of SQUISH is O(log N).
With SQUISH, a buffered crossbar switch can achieve 100%
throughput under any admissible input traffic satisfying the
strong law of large numbers. Our simulation studies indicate
that for most realistic traffic scenarios the delay performance
of SQUISH is close to that of an ideal output-queued switch.
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APPENDIX

In this appendix, we show the stability of SQUISH by apply-
ing the Lyapunov technique. Let aij (n) denote the number of
arrivals to VOQij in time slot n, aij(n) G {0, 1}. The arrival
is a Bernoulli process with a rate of Ai4 and >3Y' < 1,



,i Aij < 1. 1 As before, define Xij (n) = Qij (n) + Bij (n),
which is the total number of cells in VOQij and cross-
point buffer CBij. Note that SP (n) denotes the departure
from cross-point buffer CBij in time slot n, where SP (n)
equals one if cross-point buffer is served by output j and zero
otherwise. Then the evolution of the queue length is as follows:

Xij(n+ ) = Xij(n)+aij(n+1)-Sq(n), i, j = 1, 2, ... ., N.
(16)

The system is considered stable if the expected queue
length is bounded. In other words, the system is stable if
sup{E[X(n)]} '< oc

The stability can be proved by the technique using the
Lyapunov function. A Lyapunov function is a scalar function
that is continuous, positive definite (V(X) > 0, for any X
0), and has continuous first-order partial derivatives. Usually,
a Lyapunov function takes a quadratic form V(X(n)) =

XT(n)X(n), where XT(n) denotes the transpose of vector
X(n).

To prove stability, from [21], it is sufficient to show that
there is a negative expected single-step drift of the Lyapunov
function. In other words,

E[XT (n+1)X(n+1)-X(n)TX(n) X(n)] < c X(n) l+k.

where c > 0, k > 0 and ||X(n)|| = i,jXij(n).
The expression on the left hand side is the Lyapunov drift,

representing the expected change in the Lyapunov function
from one slot to the next. The above condition ensures that the
Lyapunov drift is negative whenever the sum of queue lengths
is sufficiently large. Intuitively, this property ensures switch
stability because whenever the total queue lengths is beyond
some value, there is a negative drift of the total backlog and the
negative drift eventually drives it back to the bounded region.

With the Lyapunov method, it was proved in [2], [3] that
for an input-queued switch, the maximum weight matching
(MWM) algorithm is stable for any Bernoulli admissible
traffic. In [9], the stability results were extended to a larger
class of scheduling algorithms, which have a weight greater
than the weight of the MWM algorithm minus a constant.
Similarly, with the defined IQSME for a buffered crossbar
switch, if the weight of a scheduling algorithm is at most a
constant away from the weight of the IQSME, we can obtain
the same stability result, as stated in the following lemma.
Lemma 1 (following [9]): Let Ws(,) denote the weight of

the schedule S at time n, and let W* (n) be the weight of
IQSME. If there exists a positive constant C such that

Ws(,) > W*(n)- C

holds for all n, then the algorithm S is stable for any Bernoulli
admissible traffic.

Proof: Define a Lyapunov function V(X(n))

1Note that the admissible traffic definition is different from the fluid
approach.

XT(n)X(n). Then

V(X(n + 1)) -V(X(n)) = Z[X,2(n + 1)- X,2(n)]
i,j

[Xij (n + 1) -Xij (n)] [Xij (n + 1) + Xij (n)]
i,j

From equation (16), we obtain

V(X(n + 1)) -V(X(n))

Z[aij(n + 1)- Spj(n)][2Xjj(n) + aij(n+ 1)
i,j

[aij(n + 1)
i,j

Si°j (n)] [2Xij (n)] + [aij (n + 1)-ij (n)]

Since there are at most N unit elements within both vector
a(n + 1) and So (n), Zi,j [aij (n + 1)- SP (n)]2 < 2N, thus
we have

V(X(n + 1)) -V(X(n))

< [aij (n + 1)- So (n)] [2Xjj (n)] + 2N.
i,J

Taking conditional expectation with respect to X(n),

E[V(X(n + 1))- V(X(n)) X(n)]
< 2 I: Xij (n) [Aij - SP. (n)] + 2N

i,j

= 2 I: Xij (n)Aj
i.j

< 2 I, Xij (n)Aij
ij

2Ws(,) + 2N

-2W* +2C+2N.

From the proof of Lemma 1,

E Xij (n)Aij <5E -kW*
i,j k

where Zk-yk < 1. Therefore,

E[V(X(n + 1))- V(X(n)) X(n)]

<-2(1-, skfW* + 2C + 2N
k

Since W* > 11X(n)JI 2, then

E[V(X(n + 1))- V(X(n)) X(n)]

< -2( Zk k) X(n) +-2C+-2N.
N

Letc = 2 (1 Zkk) and k = 2C+2N, we conclude that the
N

algorithm S(n) is stable.
In the proofs of Lemma 2 and Theorem 1, we showed that

WS(n) >- W* -2NN!,

where S(n) is the scheduling algorithm generated by SQUISH.
Therefore, the weight of a schedule generated by SQUISH is
within a constant from the weight of IQSME, and we conclude
that SQUISH is stable for any admissible Bernoulli traffic.

2There are totally N! matchings and each Xij is served in (N -1)!
matchings. Since W* = max(S*,X(n)), W* > N!NZ Sk,X(n))
(N-1)! 11X(n)JI = X(n)JI

Si°j (n)]


